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4. Code optimisation  

– "Tell me Johnny, how come you always beat that rabbit?" 

– "Well, I'll tell you.  The secret is modern design... streamlining!  Yup, we turtles are 

built for racing.  See for yourself - we got an airflow chassis.  Now take rabbits.  They're 

built all wrong for racing - those ridiculous ears!  Wind resistance, son, just wind 

resistance." – Tortoise Wins by a Hare (1943) 

If a scientific algorithm (e.g. tomography reconstruction or image analysis) can be 

made to run in less time, then it can be run more frequently, giving better temporal 

resolution for real-time analysis or a higher throughput for processing offline data.  

Alternatively, the faster, "optimised" version can process larger datasets, in the same 

amount of time that the original algorithm takes to process a smaller dataset – 

allowing more precise results or more advanced modelling. 

There are many ways to encode even the simplest arithmetic operations into a form 

that a computer can execute; some will execute faster than others and those 

faster-running implementations will often take longer to code.  For example, take the 

following Javascript snippet: 

var a = 2;   //Assign value of 2 to variable a 
var b = 2;   //Assign value of 2 to variable b 

var c = a + b;  //Add values of variables a and b, store to c 

While the purpose of this script is immediately apparent, the means to executing it 

are not.  Firstly, Javascript is an interpreted language; i.e. when run, the above code is 

translated on the fly by some program (the "interpreter") to instructions that the 

processor's electrical logic can understand.  The addition operation will typically be 

executed on an arithmetic logic unit (ALU) within the processor.  This need for the 

code to be interpreted and translated to "machine code" every time it is to be run 

delays the actual execution of the code somewhat each time.  Scientific code is 

commonly written in native languages, which are translated to machine code 

(compiled) once, this machine code can then subsequently be run directly on the 

processor many times without the need for any intermediate interpreter stage.  

Optimising analysis-performing routines in a control system can decrease control lag, 

reducing the chance of unwanted oscillations within the control system. 

4.1. Life of an instruction 

In order to understand how common optimisations work, a simplified explanation 

of how a typical computer works is provided.  The key parts of this explanation 
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(regarding optimisation) are execution units, the cache and the pipeline.  Some aspects 

of processor architecture will not be covered, including RISC/CISC, out-of-order 

execution, speculative execution, branch prediction and cache hierarchy.  The pipeline 

has also been greatly simplified; the instruction decode stage has been completely 

separated from the pipeline in the examples given in this chapter. 

4.1.1. Storage, fetch and µops 

When a program is run on a typical PC, the machine-code is initially loaded into 

system memory (RAM).  The processor then fetches code and data from RAM as it 

executes.  Previously used code and data is often retained within the processor, in a 

cache, which is considerably faster to access than the system memory.  Whether 

coming from memory or a cache, instructions are processed by the instruction decoder, 

which typically splits instructions into three or more smaller micro-operations (µops): 

� Load: This stage fetches necessary data into the processor's fastest internal 

storage, the registers.  All arithmetic is performed within registers.  PC 

processors contain a number of hidden registers, which are used to temporarily 

hold data, when an instruction specifies a memory location as one of its 

parameters (operands). 

� Execute: This stage performs the operation requested by the original instruction 

(e.g. a multiplication), on the values in the registers that were populated during 

the "load" stage. 

� Store: The result of the operation is stored into a destination typically specified 

either explicitly by the instruction or implicitly, by the specification by the 

instruction set specification. 

 A load, execute and store can typically execute simultaneously, however the 

execute state of one instruction depends on the data loaded by the load stage, so a 

single instruction typically requires more than one cycle to run fully.   Different stages 

of different instructions may however run simultaneously.  This is analogous to a 

production line, where different stages of the manufacture of some product unit may 

run simultaneously on separate units, although each stage depends on completion of 

the previous one. 
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Real processors typically have more operation types than the three listed above, 

however only these three will be considered, for the sake of simplicity.  The same 

principles apply for pipelines with many more operation types.   

4.1.2. The pipeline 

The micro-operations (µops) are put into a queue, called the pipeline.  As some µops 

can run simultaneously with others, the pipeline actually contains several queues, 

alongside each other.  The pipeline contains several stages, each of which can contain 

several instructions of different types (e.g. load/execute/store).  All of the instructions 

in one stage may be executed simultaneously, in one clock cycle.  To understand how 

this works, consider the following x86 assembly code*, which adds two to some 

number†: 

mov bx, [cx]   ; Load the memory value from position CX into register BX 
mov [sp], 2   ; Store a value of two to memory location from register SP 

mov ax, [sp]   ; Load the value pointed to by SP into register AX 

add ax, bx   ; Add the value of the BX register to the AX register 
mov [cx], ax   ; Store the value of the AX register to memory located at CX 

In this "Intel syntax", each line specifies an operation, the destination and 

optionally, some sources.  A mov instruction moves the value in the second operand to 

the destination specified by the first operand.  Square brackets (e.g. [sp]) indicate a 

memory location, so the second instruction may be decoded as "Store a value of 2 to 

the memory location specified by the sp register".  The third instruction then loads the 

value that was just stored to [sp], into the ax register.  Decoding this into load-execute-

store micro-operations gives the following: 

Instruction (x86) Load from Execute Store to 
mov bx, [cx] ........................[cx] (memory) ...........................n/a............................................. bx (register) 
mov [sp], 2 ..........................n/a ("2" coded in instruction)...n/a...........................................[sp] (memory) 
mov ax, [sp] ........................[sp] (memory) ...........................n/a............................................. ax (register) 
add ax, bx ...........................ax, bx (registers) ......................addition .................................... ax (register) 
mov [cx], ax ........................ax (register) ..............................n/a...........................................[cx] (memory) 

After decoding, we attempt to squeeze these instructions into the pipeline.  Assume 

that "loading" and "storing" a register operand is instantaneous and that several can 

occur at either the start or end of a cycle, since registers are stored within the 

processor and are thus readily accessible.  An "execute" or "store to memory" will not 

                                            
*
 Typecasts have been removed from all assembly examples, normally the pointers (bracketed expressions) would be prefixed by 

some width specifier, e.g. BYTE PTR. 

†
 In a C-syntax: *cx += 2; 
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be processed in the same cycle as a "load" from memory that it depends on, as loading 

from memory will take at least one cycle*.  Assume that an "execute" requires a whole 

cycle to run, so a "store to memory" must be processed in the cycle after the "execute" 

that produced the value to be stored.  A "store to register", being instantaneous, may 

run instantaneously at the very end of a cycle – immediately after the “execute”. 

These rules result in the following queue in the pipeline.  Pipeline instructions 

have been colour coded to group them by their original assembly instruction. 

  #1 #2 #3 #4 #5 #6 #7 
 LOAD [CX]  [SP] AX, BX AX 
 EXEC    ADD    

 STOR BX [SP] AX AX [CX] 

Recalling that the original code simply adds two to some number located at [cx] in 

memory, this resulting pipeline looks very inefficient: whilst we only have one 

"execute" cycle (which is good), we have loads in four cycles and stores in five cycles.  

Inspecting the pipeline further, the third cycle cannot execute before the second cycle 

as it depends on the value that is stored to [sp].  This value is already available though 

(the 2 in the code), so the delay is unnecessary.  Additionally, cycle #4 depends on cycle 

#3, which loads this already-known value into a register.  A simple optimisation for 

this code would be to reduce how much we move this known value around! 

mov bx, [cx]  ; Load value from memory location specified by CX, into BX register 
add bx, 2   ; Add value of 2 to BX 

mov [cx], bx  ; Store value of BX to memory at CX 

This now gives the following pipeline (execute columns, from left to right): 

  #1 #2 #3 #4 #5 #6 #7 
LOAD  [CX] BX BX 
EXEC   ADD 

STOR  BX BX [CX] 

While our optimisations have reduced the program to three cycles, each instruction 

occupies one whole cycle, so the advantage of using a pipeline is not apparent.  Now 

consider the following code and its corresponding pipeline: 

add [cx], 2 

  #1 #2 #3 #4 #5 #6 #7 

LOAD  [CX]   
EXEC   ADD 

STOR    [CX] 

                                            
*
 Loading from memory can take over 200 cycles even in modern processors, since several internal caches are searched before the 

processor resorts to communicating with the external memory banks. 
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The code now does not require a "store" in its first cycle, or a "load" in its final cycle.  

When this instruction follows some other instruction, then the lack of an initial "store" 

or final "load" becomes a useful property, as data for the next "execute" instruction can 

be loaded while the current "execute" instruction is being processed: 

add [cx], 2 
add [dx], 4 

add [ax], 8 

  #1 #2 #3 #4 #5 #6 #7 

LOAD  [CX] [DX] [AX] 
EXEC   ADD ADD ADD 

STOR    [CX] [DX] [AX] 

While one add-an-immediate-value-to-memory instruction might require three 

cycles, two such instructions in succession only require four cycles.  Similarly, four 

such instructions require only six cycles – hence with pipelining, four such 

instructions only take twice the number of clock cycles to execute completely than one 

instruction did, in this simplified model of a processor. 

Realistically, not all "load", "store" or "execute" instructions can run in just one 

cycle.  An integer addition may require an additional cycle to perform checks* on the 

result.  Likewise, loading and storing from memory will require more than one clock 

cycle.  Therefore, the simple seven-stage pipeline used in previous examples may 

"stall", waiting for some prolonged micro-operation to complete before being able to 

process subsequent operations. 

Whilst most modern compilers (and indeed processors) will re-order instructions in 

order to maximise the efficiency of the pipeline (avoid empty slots, reduce stalling), 

being aware of the pipeline allows the programmer to write code in such a way as to 

make it easier for the compiler to optimise code for the pipeline.  In C, this can be as 

simple as using array notation wherever possible (instead of pointers), which often has 

little or no adverse effect on the readability of the code, or the ease of future 

maintenance.48 

4.1.3. Execution units 

To negate the effect of "slow" instructions, a processor will often have several 

separate "execution units".  Each unit can process a variety of operations, and all units 

                                            
*
 Overflow: Is the result too small/large to be stored in the destination?  Sign: Positive or negative?  Carry/borrow, zero, parity... 
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may execute simultaneously.  The set of operations that a particular execution unit 

can process will typically differ between execution units in the same processor.  The 

execution units of a modern processor based on the Sandy Bridge microarchitecture 

are shown in Figure 4-A.  A more detailed diagram of this architecture may be found 

in source #49. 

 

Figure 4-A: Block diagram of execution units in the Intel Sandy Bridge microarchitecture. 50,52 

The SSE and AVX vector instructions are split across three execution units, and the 

arithmetic logic units (ALUs) are duplicated – so an addition, multiplication and 

shuffle can all execute simultaneously provided they do not depend on each other, or 

three integer operations could execute simultaneously.  This reduces the amount of 

time that a processor spends stalled, as several arithmetic operations may execute 

simultaneously, while the results of the previous instructions are being stored, or the 

parameters for the next instructions are being loaded.  Of particular scientific interest 

(for large dot-products and matrix multiplications) is that an SSE multiplication may 

execute alongside an SSE addition and an integer addition.  Analyse the dot-product 

code in section 4.3 to see why this particular combination is useful. 
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4.2. Data types 

There are many ways to represent numbers on paper, for example: 

� Hindu-Arabic numeral system: Perhaps the most common system, using a series 

of digits from zero to nine with positional notation.  For example: 42, 0.03, 2501. 

� Tally*:  A series of strokes and/or dots are drawn, with a quantity to match the 

number being represented.  For ease of reading, these are commonly grouped in 

some way, for example:  

� Scientific notation: An extension of the Hindu-Arabic system, where some 

exponential scale factor is introduced, for example: 19
11. 06

−

× , 8
3 10× . 

There are also many ways to represent numbers electronically.  The decimal 

(base-10) number system is typically inconvenient for fast electronics, so the binary 

(base-2) system or less commonly, the ternary† (base-3) system is used.  As with paper 

methods, these numbers may be written as a single series of digits, or analogously to 

scientific notation (i.e. with some exponent).  The way that a number is represented 

affects the range of values that can be stored, the precision of the stored values (and 

calculations involving them) and the speed of arithmetic operations on those values. 

4.2.1. Integer types 

Programming in native languages‡ requires some knowledge of machine data-

types.  Computer arithmetic is fastest when working with whole numbers, 

electronically stored in a similar way as to how whole numbers are written down (a 

series of digits).   Types which store whole numbers are typically referred to as Integer 

types in most programming languages.  Just as larger decimal numbers require more 

digits to be written down on paper, a size of integer type must be chosen which can 

hold the numbers in use.  Common PCs work with integers comprising 32 or 64 binary 

digits ("bits").  As each digits has two possible values (zero or one), this gives a 

maximum number of possible values of 32
2  and 64

2  respectively.  All the bits could be 

used to store the number's digits ("unsigned integer"), resulting in a range from 

                                            
*
 Sometimes incorrectly referred to as base-1 

†
 The ternary system is mainly an academic curiosity. 

‡
 And some interpreted languages – e.g. Java, C#, VB 
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zero to 32
1 b2 4 n− ≈  for a 32-bit number.  Alternatively, one digit could be used to store 

the sign of the integer, i.e. is it positive or negative?  This halves the maximum value 

that the data type can store, but allows negative values to be stored.  The number of 

bits used to store a data type is often referred to as the width of the data type. 

Note that integer types are precise: if a certain integer type has a range 

of 100−  to 100+ , then every integer value within that range can be represented 

uniquely by the data type.  Consequently, the result of multiplication, addition and 

subtraction of any numbers of that data type can also be represented precisely by the 

same type, provided the result does not exceed the range of the type.  Division of 

integer types typically produces a result rounded to an integer; the direction of the 

rounding depends on the compiler and/or processor used. 

Some common integer types are listed below.  Note that the C standards specify a 

minimum width, for integer types – some implementations may use greater widths 

than are specified here. 

Width/signed Minimum Maximum C/Pascal name 
Unsigned 
8-bit unsigned.................... 0.................................................255 ................................ unsigned char/Byte 
16-bit unsigned.................. 0.................................................65,535 ....................... unsigned short /Word 
32-bit unsigned.................. 0.................................................4,294,967,295 ........ unsigned long/Cardinal 
Signed 
16-bit signed...................... -32,768 ......................................32,767 ....................... signed short/SmallInt 
32-bit signed...................... -2,147,483,648 ..........................2,147,483,647 .............. signed long/LongInt 
64-bit signed...................... -9.2×1018....................................9.2×1018 ................... signed long long/Int64 

Table 4.a: Common integer data types, available on all modern PCs. 

The Javascript example may be coded in Pascal, using integer types. 

program TwoPlusTwo; 
var 

 a, b, c: LongInt; 
begin 

  a := 2; 

  b := 2; 
  c := a + b; 

end. 

Or alternatively, in C: 

int main(int argc, char *argv) {  
 int a, b, c; 

 a = 2; 
 b = 2; 

 c = a + b; 
} 

Note that like the JavaScript implementation, this simply calculates two plus two, 

then store the result to memory or a register (determined by the compiler).  When the 

program finishes (and closes), the result is destroyed.  This program has no practical 
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purpose; it is simply used to demonstrate the apparent similarity between different 

programming languages, and usage of data types. 

4.2.2. Fixed-point and rational types 

While integer types are fast and precise, the perfect precision limits the range of 

values that may be stored within such a type.  For example, in common 32-bit integer 

types encountered on PCs, values of ten billion or one quarter could not be 

represented.  Ten billion is above the range of the unsigned 32-bit integer (specifically, 

four billion) and one quarter is not a whole number.  There are various solutions to 

this problem, all balancing precision, speed and size.  For storage of fractions, one may 

combine two integers to produce a rational number.  One (usually signed) integer 

stores the numerator of the fraction, while the other (commonly unsigned) stores the 

denominator.  Multiplication, division, addition and subtraction may be achieved using 

the same algorithm that is taught in schools for working with vulgar fractions on 

paper.  As an operation on two rational types involves working with four integers, such 

operations will be slower than working on just two integers, however the ability to 

work with non-integer values will outweigh this drawback in some situations. 

A fixed value for the denominators of all rational types could be implicitly assumed, 

removing the need for it to be stored with each number.  For example, when adding 

shop prices* in British Pounds Sterling or Euros, an implicit denominator of 100 could 

be assumed.  Rational types (e.g. the Pascal Currency type) with implicit 

denominators are called fixed-point types, and are faster and more compact than 

rational types, but are slower than integer types. 

4.2.3. Floating-point types 

Rational types and fixed-point types allow handling of fractions, however they do 

not overcome the range limitation of integer types.  Often in scientific computation, 

perfect precision is not necessary; hence, some precision may be traded for increased 

range.  For example, the speed of light in a vacuum is defined exactly as 

0
c 299,792,458 m s= .  The Coulomb constant is defined as 2 7 2 2

0
10 Nm Ck c

−

×= .  While 

this value is known exactly (with 17 decimal digits), it is often sufficient in 

                                            
*
 i.e. smallest unit of currency is one pence, 1/100 of a pound. 
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calculations to round it to a few places, as physical measurements will usually not be 

precise enough for the rounding to have a significant effect on the result.  The rounded 

constant may be written in scientific notation as 9
8.99 10× .  A similar notation is used 

by computers, for inexact representation of very large and very small numbers.  

Scientific notation is composed of a mantissa multiplied by a base that is raised to an 

exponent as shown in equation 3.3.  Conventionally, the mantissa has one and only 

one non-zero digit immediately to the left of the radix, and any number of digits to the 

right of the radix, illustrated in equation 3.4. 

 exponent

bamantissa se×  e.g: 8

0
2.99792458 10c = ×  3.3 

 
0 1 2 3 4 5

mantissa ...d d d ddd= i  e.g: 3 14159...π = ⋅  3.4 

In floating-point formats, the base is implicitly either two or ten (depending on the 

data type) and the leading digit of the mantissa (for base two) is often implicitly set to 

one.  With these (and other) assumptions, the amount of information that must be 

stored to describe a number is reduced, boosting either the range or precision available 

within a certain width.  The result is that an IEEE 754 32-bit floating-point type can 

store values as small as 38
10

− , as large as 38
10

+ , with a precision of approximately 

seven decimal figures.  Arithmetic on floating-point types is slower than for integer 

types, but the algorithms for floating-point arithmetic are embedded in the circuitry of 

modern processors.  This yields a substantial performance increase to such operations 

compared to software-based implementations.  There are several floating-point types, 

differing by the number of bits allocated for the mantissa and the exponent, or by the 

way that the data is arranged within the type.  Below are two types, defined in 

IEEE 754-198551,*, in addition to a third 80-bit type available on most PC processors: 

Width/description Min/max magnitude Precision C/Pascal name 

32-bit single-precision....... 45 38

1.5 10 / 3.4 10
− +

× × ....................~7 digits..................................... float/Single 

64-bit double-precision ..... 324 308

/5.0×10 1.7×10
− +  .................~15 digits...............................double/Double 

80-bit extended-precision . 4932 4932
10 / 103.4 1.1

−

× × .........~19 digits................... (disputed†)/Extended 

Table 4.b: Common floating-point types, available on all modern PCs. 

                                            
*

 Since superseded by 754-2008, which defines more types 

†

 Some C compilers accept long double to specify an 80-bit type, other C compilers refuse to support Extended precision, and map it 

to double-precision.  The specifications for the basic data types in the C standards are defined very weakly. 
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The example algorithm, coded to use "single-precision" floating-point types looks 

remarkably similar to the integer version in either C or Pascal: 

program TwoPlusTwo; 

var 
 a, b, c: Single; 

begin 
  a := 2; 

  b := 2; 

  c := a + b; 
end. 

Equivalent program, in C: 

int main(int argc, char *argv) {  

 float a, b, c; 
 a = 2; 

 b = 2; 
 c = a + b; 

 return 0; 
} 

4.3. Vectorising 

Often in scientific and multimedia applications, a single operation will be applied 

to many sets of floating-point values.  Examples of this include vector addition 

[equation 3.5], matrix multiplication [equation 3.6] and the dot product [equation 3.7]. 

 ( ) ( ) ( ); ;
i i i ii i i

a a b b c a b a b= = = + = +

� �

� � �

 3.5 

 ( ) ( ); ;
ij ij ik kj

ij ij
k ij

a b a b

⎛ ⎞
= = = = ⎜ ⎟

⎝ ⎠
∑A B C AB  3.6 

 ( ) ( ) ·; ;
i i i ii i

i

Ca a b b a b a b= = = =∑
� �

� �

 3.7 

A historic supercomputer, the ILLIAC IV, attempted to accelerate processes like 

these by having several arithmetic logic units (ALUs), each operating on separate 

data, but all driven by the same instructions at once – nowadays referred to as "SIMD" 

(single-instruction, multiple-data).  Hence, a vector addition could be performed in a 

similar amount of time as an individual floating-point multiplication since each pair of 

elements was added simultaneously on different ALUs.  21st century PC processors 

can typically operate on four pairs of single-precision data at once, using SIMD 

Streaming Extensions (SSE).  Recent instruction sets such as AVX allow even larger 

amounts of data to be processed in one instruction, while FMA allows multiplication 

and addition to be combined into one instruction.  Vectorisation technology is 

continually evolving as processors become more advanced; a timeline of SSE 

instruction sets as implemented in Intel processors is shown below: 
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Figure 4-B: Timeline of SIMD Streaming Extensions (SSE) in Intel processors.52 

Typically, there is no convenient way to instruct the compiler to use these 

technologies in the code; one must either rely on the compiler's analysis of the code 

(assuming the chosen compiler can automatically vectorise code) or one must 

manually specify the low-level instructions to use.  The pure C code to perform a dot 

product is shown below.  Modern compilers would usually be able to detect that this 

code can be vectorised, and would vectorise it automatically. 

float dot(float *a, float *b, int length) { 

 float result = 0; 
 int i; 

 for (i = 0; i < length; i++) 
  result += a[i] * b[i]; 

 return result; 
} 

Although modern compilers would usually be able to vectorise this routine 

automatically, routines that are more complex may require manual optimisation.  An 

example of such an optimisation for the previous dot-product code is shown below*, 

using SSE "intrinsics", which represent machine-level SSE instructions with a C 

syntax. 

                                            
*

 This version requires that the length of the vectors is a multiple of four, or that the vectors are zero-padded to a length that is a 

multiple of four 
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#include <intrin.h>  

#include <xmmintrin.h> 

 
float dot(float *a, float *b, int length) { 

 float result; 
 int i; 

 __m128 total, partialsum = _mm_setzero_ps(); 
 for (i = 0; i < length; i += 4) 

  partialsum = _mm_add_ps(partialsum,  

   _mm_mul_ps(_mm_load_ps(&a[i]), _mm_load_ps(&b[i]))); 
 total = _mm_hadd_ps(partialsum, partialsum); 

 total = _mm_hadd_ps(total, total); 
 _mm_store_ss(&result, total); 

 return result; 
} 

As more optimisations are performed, the code becomes less readable.  Whist 

optimisations may reduce the time required for a program to run, the increased 

amount of time required to develop the program and to test it may negate the benefits 

of optimisation.  Code that is not expected to need modifying for a long time may be 

optimised heavily; the optimisation and testing will take a considerable amount of 

time, but the resulting program will run very quickly.   For code that is likely to 

change frequently, or to only be run a small number of times, the amount of 

optimisation that should be performed on any piece of code is a delicate balance 

between production/testing time and run time.  An example of somewhat illegible, but 

optimised code is shown below.  It is an optimised version of the dot-product C routine.  

Parameter locations: 

 float *a    in  eax 
 float *b    in  edx 

 int length   in  ecx 

 float result   out ST(0) 
 

Code: 

 xorps xmm0, xmm0     ; zero the accumulator 

 test ecx, ecx      ; sanity check: 
 jle short @EndLoop     ;   is vector length greater than zero? 

 lea edx, [edx-eax]  

 shr ecx, 2       ; fast way to divide integer by four 
 @BeginLoop:       ; "for"-loop 

  movaps xmm1, XMMWORD PTR [edx+eax] ; load data from one vector 
  mulaps xmm1, XMMWORD PTR [eax] ; entrywise product with other vector 

  add eax, 16      ; move data pointer onto next block  
  dec ecx       ; decrease loop counter 

  addps xmm0, xmm1    ; accumulate entrywise products 

  jnz short @BeginLoop   ; do next iteration of "for"-loop 
 @EndLoop:        ; end of "for"-loop 

 haddps xmm0, xmm0     ; these horizontal additions sum the four 
 haddps xmm0, xmm0     ;   partial sums of the accumulator 

 movss DWORD PTR [esp-4], xmm0  ; these two transfer the answer to the 
 fld DWORD PTR [esp-4]    ;   FPU. Not terribly efficient... 

 ret          ; end of subroutine (return to caller) 

If in future, single-precision floating-point was insufficient, i.e. a larger range or 

more precision was required, then the original pure C code could be quickly modified 
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to use the double type instead of float.  The SSE-optimised C and the above assembly 

code however would require considerably more changes.  Scientific software typically 

does more than just calculate dot-products, but the balance between execution time 

and development time demonstrated with this simple code is just as applicable to 

much larger and more complex scientific programs. 

The most recent PC vectorisation instruction sets, FMA and AVX, could have also 

been used, however the code would not be able to run on an older or simpler processor 

that did not support such instructions.  Lab computers are typically upgraded/replaced 

infrequently; so cutting-edge instruction sets should be avoided for software intended 

for lab computers, unless a suitable computer is to be supplied with the software.  For 

this reason, such instruction sets will not be considered. 

4.4. Multithreading 

The maximum rate at which a processor can execute instructions is typically 

determined by two main factors*: 

� Clock speed – the rate at which electronic clock signals trigger the 

computational circuitry within the processor.  Typically, the entire computer is 

driven by some base clock, often at hundreds of megahertz.  The processor may 

execute several instructions in each base clock cycle, the maximum number 

determined by a multiplier ratio.  The processor's clock speed is the product of 

the base clock rate and the multiplier, for example a system with a 100 MHz 

base clock speed and a processor multiplier rate of 42 will have a processor clock 

speed of 4200 MHz (4.2 GHz). 

� Core† count – Modern processors contain several "cores", each capable of 

simultaneously executing different code and working with different data. 

Just as code can be modified (vectorised) to take advantage of vector units within 

the processor, and instructions can be combined and re-ordered in order to exploit the 

pipelined nature of modern processors, algorithms can also be multithreaded in order 

to use multiple cores simultaneously.  Multithreading comes under the umbrella of 

                                            
*

 There are other factors, for example the memory bandwidth and the cache latency. 

†

 Note that AMD's marketing uses "core" to refer to what IBM and Intel call a "thread", and uses "module" to refer to what is 

commonly accepted within the industry to be a "core". 
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parallelisation, which involves splitting a single task into chunks that can be executed 

simultaneously and near-independently.  Each separate execution path (in the context 

of multithreading) is referred to as a thread.  Each core has its own individual 

instruction decoder(s), pipeline(s), execution units, registers and cache. 

In the case of a large dot-product, the first half of each vector could be "dotted" in 

one thread, while the second halves are simultaneously "dotted" in another.  These 

partial dot-products could then be collected by one thread and summed to give the 

final answer.  The stages of this multithreaded dot-product are: 

� Dispatch: The data is split into separate chunks, which are dispatched to each 

worker thread.  As typical PCs have one node of memory, shared between all 

cores, this step consists only of deciding what data is to be processed in each 

thread.  More advanced systems, using NUMA (none-uniform memory 

architecture) would generally require data to be moved between memory nodes 

at this stage. 

� Execution: The partial dot-product routines on each core are started.  Each 

thread can begin this immediately after the dispatch.  Some other operations 

(where threads communicate during execution) require the dispatch to complete 

in all threads before execution can begin. 

� Cleanup: The partial results from each thread are collected into one thread and 

summed together.  For some operations, all threads must finish execution before 

this stage can occur.  For a parallel dot-product, each thread can add its partial 

result to some shared running total as they complete, provided some mechanism 

is in place to ensure that no two threads attempt to do this simultaneously (e.g. 

atomic operations, critical sections). 

Other operations (e.g. matrix inversion) may require more inter-thread 

communication.  Communication and co-ordination between separate cores is beyond 

the scope of this report*; it is sufficient to say that it often has a negative effect on the 

over all performance of the code.  Hence, multithreaded routines must usually 

minimize the amount of synchronisation and co-ordination performed between 

individual threads. 

                                            
*

  Involving synchronisation objects, LOCK prefixing and shared memory. 
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Parallelisation in C has been greatly simplified by technologies such as the 

following: 

� MPI – Message Passing Interface: this provides a simple and robust way for 

separate instances of a program (or of different programs) to communicate, 

whether they are running on different cores on the same computer, or running 

on many separate computers within a grid computing network such as IBM's 

Blue Gene project and the numerous Cray supercomputers around the world. 

� OpenCL/CUDA/OpenACC – These provide relatively easy ways to tap into the 

computational power of graphical processing units (GPUs/GPGPUs), which may 

be seen as extreme vector processors capable of running one instruction on 

dozens of pairs data simultaneously. 

� OpenMP – This provides incredibly simple ways to multithread algorithms, with 

minimal changes required to the algorithms.  The code often remains readable 

and maintainable. 

OpenMP and OpenACC can provide significant performance improvements, with 

minimal extra time required to implement.  OpenACC currently requires specialist 

hardware, so will not be considered here.  OpenMP is mature and is fully implemented 

on many major operating systems and system architectures. 

The pure-C dot-product routine is shown again below (assume that the compiler 

can automatically vectorise the main loop): 

float dot(float *a, float *b, int length) { 
 float result = 0; 

 int i; 

 for (i = 0; i < length; i++) 
  result += a[i] * b[i]; 

 return result; 
} 

An OpenMP–multithreaded version of this routine is shown below: 

float dot(float *a, float *b, int length) { 

 float result = 0; 
 int i; 

 #pragma omp parallel for reduction(+:result) 

 for (i = 0; i < length; i++) 
  result += a[i] * b[i]; 

 return result; 
} 

For multithreading without OpenMP, several calls to operating-system specific 

routines would be necessary in order to start ("fork") the extra threads, a separate 

subroutine containing the threaded code to execute in each thread would have to be 
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created, and synchronisation code would be necessary in order to detect when all 

threads have finished working.  With OpenMP, the code that manages the threading is 

wrapped in simple directives (“pragmas”).  Multithreading an algorithm can 

sometimes be as simple as adding one line of code to the original single-threaded 

routine, as shown above. 

4.5. Benchmarking 

Parallel and non-parallel versions of the vectorised and non-vectorised 

implementations were benchmarked on a 4.83 GHz Sandy Bridge quad-core processor, 

their speeds are compared in Figure 4-C. 

 

Figure 4-C: Comparison of the performance of various dot-product algorithms, with varying vector 

sizes. “U” = loop unrolling optimisation, “SSE” = SSE4 vectorisation optimisation, “OMP” = OpenMP 

multithreading optimisation. 

The largest cache on the processor (level-3) is eight megabytes in size.  The peak 

bandwidth of this cache is approximately 132 GB/s on the processor used for this 

benchmark, in contrast to the peak system memory bandwidth in the configuration 

used, which was  30 GB/s.  The processor has a 64-bit (8-byte) word size.  This is the 

width of the data paths and registers.  This allows the processor to store integers and 

memory addresses with widths of up to 64-bits, allowing it to efficiently perform 

arithmetic on integers of 64-bit width and smaller.  Caches and memory can typically 

transfer blocks of two, four or eight words between each other.  Each core of the Sandy 

Bridge processor can load six such words (48-bytes) per cycle.  The level-3 (last level) 

cache on the system used was 8 MB in size and shared between all four cores.  Each 
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core has its own level-2 cache, which is 256 kB in size, giving a total level-2 cache size 

of 1 MB.  The performance graph of Figure 4-C is shown in Figure 4-D, but the axes 

are now in terms of the dataset size and data bandwidth.  Notice that for all 

algorithms, the performance drops to some asymptotic values, as the data size exceeds 

the level-3 cache size. 

 

Figure 4-D: Performance of various dot-product algorithms, plotted against the dataset size 

The speed of the single-threaded, non-vectorised algorithm (black: pureC) is 

primarily limited by the rate at which the processor can calculate multiplications and 

additions, hence does not change until the system memory is required – while the 

memory accesses don't bottleneck the algorithm, they do introduce some latency, 

which reduces the performance slightly.  The SSE and unrolled SSE algorithms (green, 

red) achieve approximately four times the speed of the C algorithm when not limited 

by memory bandwidth.  Even when the data bandwidth becomes a bottleneck, they 

achieve double the performance of the C algorithm.  This is most likely due to the C 

algorithm fetching eight bytes for each cycle of the dot product (a pair of 32-bit floats), 

whereas the SSE versions fetches thirty-two bytes at a time (a pair of vectors, each 

containing four 32-bit floats).  The C version loads two 64-bit words per iteration but 

then discards half of each word, whilst the SSE version loads four words per iteration, 

but uses all the information in them.  The C version “wastes” half of the data that it 

loads, halving its performance when the rate of data  access (i.e. memory bandwidth) 

becomes a bottleneck. 
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Compared to the plain SSE version (green), the “unrolling” optimisation (red*) 

results in a performance increase that ranges from negligible to approximately 15%.  

Interestingly, this algorithm does not experience the performance drop that the 

non-“unrolled” version does as the dataset size exceeds 256 kB.  It is thought that this 

drop has some relationship to the level-2 cache (which is 256 kB in size, per core) and 

that the absence of a drop for the unrolled version is due to the prefetching 

optimisation, which instructs the core to load data several iterations before the data is 

processed.  This implies that the bandwidth of the caches is not a significant 

constraint on the performance of the algorithm, but that the higher latency of the 

level-3 cache will cause a significant drop in performance if data is not pre-fetched in 

advance. 

For dataset sizes less than 32 kB, the overhead of thread management and 

synchronisation results in a decreased performance for the multithreaded SSE 

algorithm.  Beyond this size, the performance of the algorithm increases, as the time 

incurred by the thread management becomes less than the time saved by calculating 

in parallel.  This increase abruptly stops as the dataset size approaches (and exceeds) 

the 8 MB size of the level-3 cache, as the system memory bandwidth becomes the 

bottleneck (instead of calculation speed). 

The vectorised algorithms are always faster than the non-vectorised (scalar) 

versions, as the vectorised versions perform more arithmetic per processor cycle.  

Unrolling gives a slight increase in performance across the entire vector length range 

that was used.  Multithreading is detrimental to performance for algorithms that run 

for short amounts of time (comparable to the time of the threading overhead), but 

larger vector sizes gain a significant (~2-3x) performance increase with multithreading 

on this particular system.  Multithreading also gives a slight performance increase for 

bandwidth-limited execution, as more cache is available for use.  Matrix multiplication 

may be viewed as a series of dot-products, so this conclusion also applies to matrix 

multiplications, where the width of the left matrix (alternatively, the height of the 

right matrix) is the vector size for each individual dot-product operation.  The optimal 

algorithm to use for any operation (not only dot-products) is determined by the size 

                                            
*

 A "prefetching" optimisation was also used for the unrolled versions.  The loops were unrolled by a factor of sixteen. 
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and structure of the input data, in addition to the hardware available.  A graph of the 

speeds of the algorithms, measured relative to the speed of the pureC implementation 

is shown in Figure 4-E, below. 

 

Figure 4-E: Performance of various dot product algorithms, relative to the pureC implementation. 

The purpose of this benchmarking example is to demonstrate the significant 

difference in performance between several algorithms designed to perform identical 

tasks, and to emphasise the importance of optimisation.  Dot-products of large vectors 

may be calculated even more rapidly on GPGPU hardware than by use of the previous 

algorithms on CPUs.  Whilst nonlinear solvers and other common scientific 

computation tasks are considerably more complex than dot-products, the benefits of 

optimisation apply similarly to the more advanced algorithms. 


